MoSe2-GO/rGO Composite Catalyst for Hydrogen Evolution Reaction
11/06/2019
/
Công bố khoa học
/
Năm công bố 2018
/
Hóa học tiên tiến
Authors:
Wenwu Guo, Quyet Le, Amirhossein Hasani, Tae Lee, Ho Jang, Zhengtang Luo, Soo Kim
Publisher: Multidisciplinary Digital Publishing Institute
There has been considerable research to engineer composites of transition metal dichalcogenides with other materials to improve their catalytic performance. In this work, we present a modified solution-processed method for the formation of molybdenum selenide (MoSe2) nanosheets and a facile method of structuring composites with graphene oxide (GO) or reduced graphene oxide (rGO) at different ratios to prevent aggregation of the MoSe2 nanosheets and hence improve their electrocatalytic hydrogen evolution reaction performance. The prepared GO, rGO, and MoSe2 nanosheets were characterized by X-ray powder diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, and scanning electron microscopy. The electrocatalytic performance results showed that the pure MoSe2 nanosheets exhibited a somewhat high Tafel slope of 80 mV/dec, whereas the MoSe2-GO and MoSe2-rGO composites showed lower Tafel slopes of 57 and 67 mV/dec at ratios of 6:4 and 4:6, respectively. We attribute the improved catalytic effects to the better contact and faster carrier transfer between the edge of MoSe2 and the electrode due to the addition of GO or rGO. View Full-Text